Evaluation of risk assessment factors for interspecies and time-extrapolation

Monika Batke*, Sylvia Escher, Annette Bitsch, Inge Mangelsdorf

Fraunhofer Institute for Toxicology and Experimental Medicine -ITEM, Hannover, Germany

*corresponding author: Monika.Batke@item.fraunhofer.de

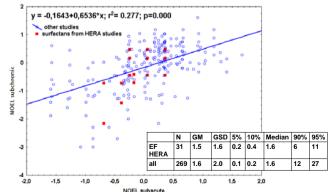
Introduction

- Standard Assessment factors have been suggested e.g. by ECHA to extrapolate from animal to
- human data as well as from non-chronic to chronic exposure
- Publications on extrapolation factors using probilistic approaches are often based on small datasets (1,2) indicating that there is a need for further justification
- The aim of the project is to assess time and interspecies extrapolation factors based on a solid
- databasis using the Fraunhofer database RepDose (www.fraunhofer-repdose.de) (Table 1)
- Special focus of the project is the applicability of the derived extrapolation factors to surfactants

Time extrapolation

Tiered approach

same chemical + species + oral route in mmol/kg bw/d same chemical + species + inhalation exposure (local/systemic toxicity)


Table 1: Time extrapolation for oral exposure- with the database RepDose

Route	Same chemical + species		EF study duration							
			N	GM	GSD	5th	Median	90 th	95 th	
		Subacute- subchronic	74	2.7	2.0	0.3	1.9	28	53	
Oral (mmol/kg b/d)	Study level	Subchronic- chronic	234	1.5	1.8	0.2	1.8	8	12	
		Subacute- chronic	49	2.9	2.0	0.1	2.8	25	33	
		Subacute- subchronic	49	2.7	2.1	0.3	2.0	28	53	
	Chemical level	Subchronic- chronic	109	1.2	1.8	0.2	1.3	5	10	
		Subacute- chronic	33	4.2	2.0	0.6	3.0	24	33	

Table 2: Time extrapolation for inhalation (local and systemic toxicity). Small datasets are indicated in grey.

Route	Same che	mical +			EF st	udy d	uration		
Noule	species (s	species (study level)		GM	GSD	5 th	Median	90 th	95 th
	Systemic	Subacute- subchronic	70	1.2	2.1	0.05	1.0	10	16
		Subchronic- chronic	287	1.9	2.0	0.1	2.0	14	16
		Subacute- chronic	29	1.5	1.8	0.2	1.3	7	13
Inhalation	Local	Subacute- subchronic	16	1.9	1.8	0.2	1.5	7 13 13 19	19
		Subchronic- chronic	61	2.7	1.9	0.5	2.0	19	39
		Subacute- chronic	15	3.4	2.0	0.3	3.4	30	54

Figure 1: Scatterplot of NOEL values for subacute to subchronic extrapolation for oral exposure. Surfactants are indicated in red.

Results time extrapolation

- Time extrapolation factors differ for oral and inhalation exposure.
- Oral exposure: time extrapolation factors are: 2/1.3/3. They are smaller than those proposed by ECHA (3/2/6).
- Inhalation exposure: local and systemic toxicity have to be distinguished.
- Factors for systemic inhalation toxicity are 1/2/1.3.
- The time extrapolation factors fits well to extrapolate surfactants.

Table 1: Content of the RepDose database

Study Type		Number of				
		Chemicals	Studies			
All		661	2217			
Species	Rat	644	1590			
	Mouse	335	627			
Route	Oral	543	1527			
	Inhalation	284	690			
Duration	Subacute	244	325			
	Subchronic	366	665			
	Chronic	272	513			

Interspecies extrapolation

Tiered approach

same chemical + duration + oral exposure same chemical + duration + inhalation exposure

Table 3: Interspecies extrapolation - with the database RepDose

Route	Same chemical, duration		EF interspecies (mouse/rat)							
	Oral (mmol/kg bw/d)	Study level	Subacute	11	1.6	2.9	0.1	1.0	99	192
Subchronic			148	2.3	1.8	0.3	2.1	14	25	
Chronic			144	2.6	1.9	0.5	2.0	16	27	
Chemical level		Subacute	7	1.2	2.8	0.1	1.0	99	99	
		Subchronic	103	2.3	1.8	0.3	2.1	13	25	
		Chronic	116	2.6	1.8	0.5	2.0	15	23	
Inhalation (ppm)	Study level	Subacute	7	1.3	2.6	0.1	1.0	152	152	
		Subchronic	58	0.9	1.8	0.1	1.0	8	8	
		Chronic	51	1.2	1.6	0.2	1.0	5	7	
	Chemical level	Subacute	6	2.0	1.9	0.4	1.0	152	152	
		Subchronic	43	1.2	2.0	0.1	1.0	8	8	
		Chronic	37	1.3	1.6	0.2	1.0	5	9	

Results – interspecies

Oral

- according to allometric scaling the interspecies factor mouse/rat would be (bw rat/bw mouse)^{0.25} = 1.75
- a mouse/rat extrapolation factor of up to 2.6 is derived, which is slightly higher than the factor just derived by allometric scaling, based on standard assumptions for body weight.

Inhalation

- a factor of 1 would be expected from allometric considerations
- \bullet a mouse/rat extrapolation factor of 0.9-1.3 is derived, which confirms allometry

Overall, an additional factor of 2.5, which is proposed to be used for "further interspecies differences" is not confirmed in this approach.

Perspectives

The analysis for time extrapolation factors will be continued, next steps are:

Analysis of outliers

- •Subgrouping of chemicals, and derivation of specific extrapolation
 - factors for e.g. accumulating substances
 - irritating substances
- The combination of extrapolation factors will be evaluated.

Acknowledgement

This project has been funded by

ERASM (Environmental Risk Assessment and Management). Some data have been provided from Dinant Kroese/ Harrie Buist from the Toxbase database, TNO - Netherlands Organisation for Applied Scientific Research.

References

1-Vermeire, T. et al (2001), TNO report V3489 2-Schneider, K. et al (2002), Bericht zum UFOPLAN Projekt 20165202, Freiburg

