Sound oral to inhalation extrapolation factors (EFs) for human health risk assessment

Sylvia Escher*, Monika Batke, Annette Bitsch, Inge Mangelsdorf

Fraunhofer Institute for Toxicology and Experimental Medicine -ITEM, Hannover, Germany

*corresponding author: Sylvia.Escher@item.fraunhofer.de

Introduction

- Route to Route extrapolation (R2R) is required if no in vivo data on the appropriate route are available
- R2R needs to be performed in a case by case approach for the individual substance
- Criteria for R2R are: only systemic toxicity; critical toxic effect is not a local effect; no significant differences in metabolism in both routes; first pass effect is minimal; the substance is soluble in body fluids; account for differences in absorption (ECHA default factor of 2)

Is a general oral to inhalation extrapolation factor of 2 justified?

Method - Tiered Approach

- Probabilistic approach
- Distinction of systemic and local toxicity (Figure 1)
- Amount and quality of data in the database RepDose allows an tiered approach (Table 1).
 - 1.) same chemical + species
 - 2.) same chemical + species + study duration
- All factors of all studies (study level)/ one factor for each chemical (chemical level) are analysed

Figure 1: Local and systemic target organs for inhalation exposure

Local targets/organs eye, respiratory tract (nose, larynx, pharynx, trachea, bronchi, lung)

Systemic targets/organs

liver, kidney, spleen, thymus, testes

Results – systemic toxicity

Table 2: Median, GM and percentiles of the oral to inhalation EFs. Small datasets are indicated in grey.

					EF o	ral/inh	alation	_	
Same	Туре		Ν	GM	GSD	5 th	Median	90 th	95 th
Chemical	Study level		245	1.7	2.9	0.03	1.5	43	85
+ Species	Chemical level		69	1.4	3.1	0.02	1.1	43	142
		All	87	1.7	3.0	0.03	1.4	44	70
		Subacute	25	0.8	3.1	0.03	0.6	37	43
	Study level	Subchronic	48	2.3	2.7	0.09	2.6	44	53
Chemical		Chronic	14	2.3	3.4	0.01	1.1	85	167
+ Species + Duration		All	53	1.2	3.1	0.01	1.1	37	53
Duration		Subacute	17	1.2	3.6	0.01	1.3	43	62
	Chemical level	Subchronic	25	2.0	2.8	0.09	2.4	49	53
		Chronic	11	0.4	2.9	0.01	0.3	5	33

Results/Conclusion

 A general R2R EF based on the Geometric Mean (GM) or Median ranges between 1.1 and 2.6 for systemic toxicity or non-irritating substances (Table 2).

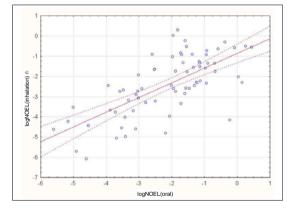
- 90 percent of all chemicals will be predicted in a conservative manner using a general EF of about 40 (37 to 49).
- The regression of log(NOELinhal) versus log(NOEL oral) shows a linear correlation
- The initial linear regression already predicts the NOELvalue of an inhalation study for 48% of all substances in the RepDose dataset (Figure 2, R²=0.48, p <0.01)
- · Subgroups of chemicals will be over- or underpredicted by an general route to route EF.
- · Figure 3 depicts subgroups using logPow as descriptor

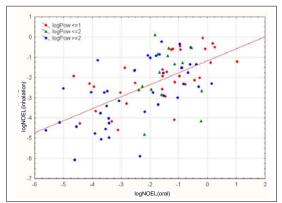
Perspectives

- Multiple regression analysis to increase the predictivity of inhalation NOELs
- · Analysis of outliers
- Specific R2R extrapolation factors for subgroups like
- non-reactive substances e.g. solvents ..
- · Several descriptors will be used for multiple regression analyses and subgroup identification structural descriptors

descriptors of reactivity like EHOMO, ELUMO

physicochemical descriptors e.g. vapour pressure


Table 1: Content of the RepDose database

Study Type		Number of			
		Chemicals	Studies		
All		661	2217		
Route	Oral	543	1527		
	Inhalation	284	690		
Duration	Subacute	244	325		
	Subchronic	366	665		
	Chronic	272	513		

Figure 2: Linear regression analysis

Figure 3: Illustration of subgrouping using logPow as descriptor

Acknowledgement

This project has been funded by ERASM (Environmental Risk Assessment and Management). Some data have been provided from Dinant Kroese/ Harrie Buist from the Toxbase database, TNO - Netherlands Organisation for Applied Scientific Research.

