

Assessment of methods for measuring the membrane-water partition ratio (K_{MW}) for surfactants

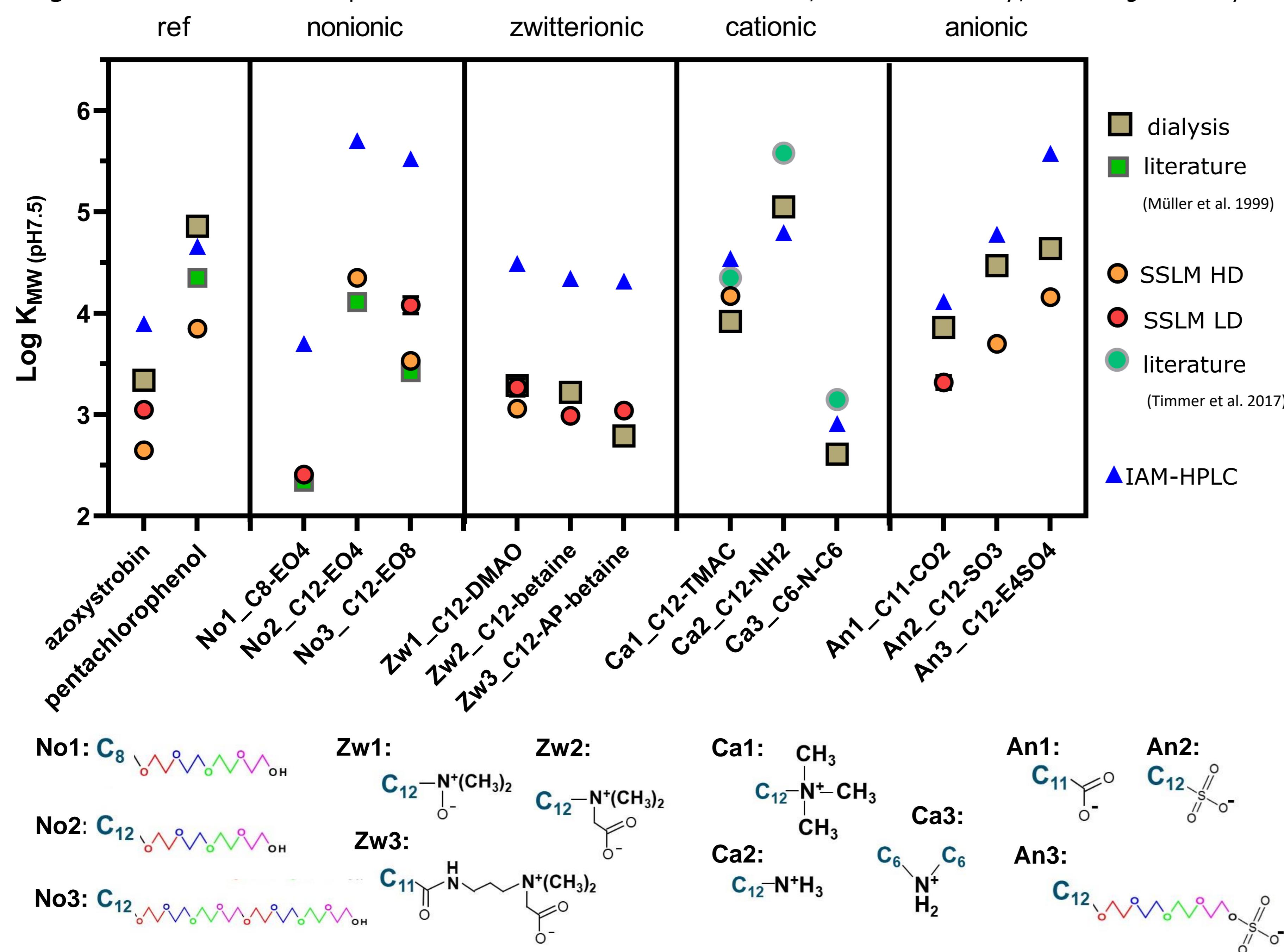
Steven Droege^{1*}, Nina Jansen¹, Elin Barrett², Adriana Bejarano³, Jens Bietz⁴, Kristin Connors⁵, James Dawick⁶, Marc Geurts⁷, Geoff Hodges², Eoin Kearney⁸, Mark A. Miller⁸, Diederik Schowanek⁵, Sabrina Wilhelm⁹

¹Environmental Risk Assessment, Wageningen Environmental Research; Netherlands; ²Safety and Environmental Assurance Centre, Unilever, UK; ³Shell Global Solutions, US;

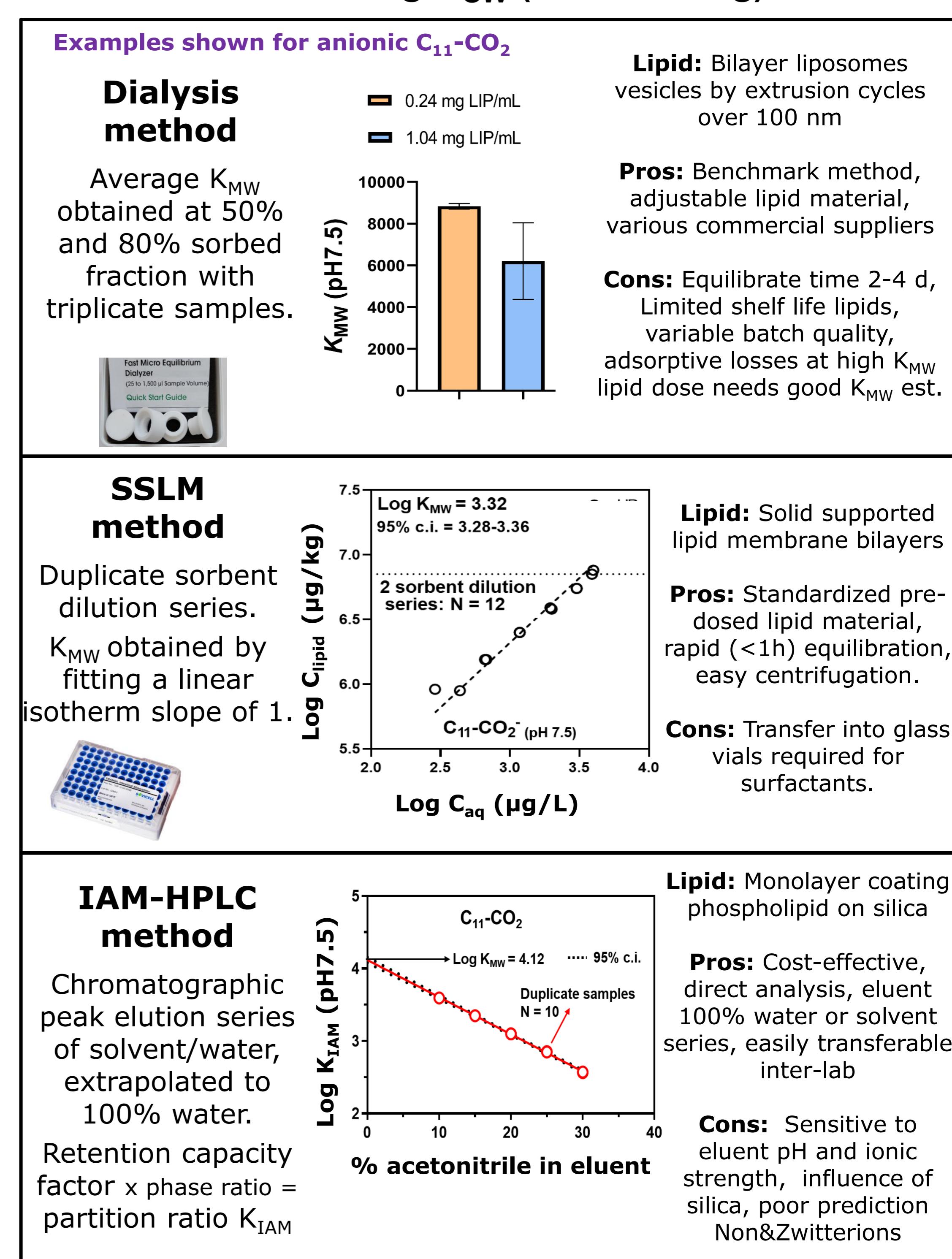
⁴Clariant Produkte (Deutschland) GmbH; ⁵Procter & Gamble Brussels Innovation Centre; ⁶Innospec Limited; ⁷Nouryon; ⁸Department of Chemistry, Durham University, UK;

⁹BASF Personal Care & Nutrition GmbH

[*steven.droege@wur.nl]


Background & Objective

The Environment and Health – Risk Assessment & Management (ERASM) is a joint research platform of the European Detergents and Surfactants Industries. The ERASM 'Membrane Water Partitioning of Surfactants' project aims to evaluate the alignment between 3 experimental and 3 computational methods to derive the **phospholipid membrane-water partition ratio (K_{MW})**, covering 4 surfactant types. K_{MW} previously has been shown to provide a New Approach Methodology (NAMs - 3R principle) to assess the bioconcentration factor (BCF) when applied with *in vitro* biotransformation data as part of a tiered approach (Droege et al. 2021). Here we discuss results from 3 experimental methods: liposome vesicles in dialysis systems, Solid Supported Lipid Membranes (SSLM: bilayers covering silica), and immobilized artificial membrane chromatography (IAM-HPLC: monolayer coated silica). For computational methods, see Poster Corner TUE 3.12 Kearney et al.


Results

- Even for non-surfactant chemicals, K_{MW} range ~1 log units for the 3 methods (**Figure 1**).
- There is reasonable consistency between the K_{MW} by SSLM and dialysis. The high density (HD) and low density (LD) SSLM sorbent dilution series deviated up to a factor 3 in K_{MW} . Care is needed in selecting the right density (**Figure 1**).
- K_{MW} by IAM-HPLC are >10x higher than SSLM for zwitterions, nonionics and C12-E4SO₄, but lower for some cations (**Figure 1**). The ethoxylate chains (coloured units in molecules) cause strong overestimation for IAM-HPLC, no explanation yet for zwitterions.
- K_{OW} is predictive of K_{MW} for nonionic surfactants, but K_{OW} may strongly underestimate the favourable interactions with phospholipids for ionic surfactants. Biotransformation data maybe required for some surfactants to determine relevant BCF values. For most ionic surfactants, $K_{MW} >> K_{OW}$ (**Figure 2**).
- Experimental feasibility for the experimental methods is limited to $\log K_{MW} < 6$. In a proposed Tier 1 baseline BCF assessment (no biotransformation, 1% phospholipid fraction as key sorptive phase, (Droege et al. 2021)) $\log K_{MW} 5 \equiv 1000 \text{ L/kg}$ for ionic surfactants. Validated computational approaches to predict K_{MW} are thus needed to extend the chemical domain for challenging (technical) surfactants.

Figure 1: Membrane-water partition ratios from 3 different methods, LD = low density; HD = high density

Figure 2: Average membrane-water partition ratios (SSLM and dialysis) plotted against the most reliable K_{OW} values using the slow stirring method (Hodges et al. 2019).

Conclusions & Outlook

- We completed a systematic K_{MW} data matrix (**Figure 1**) to inform risk managers which type of membrane-water assay has a high confidence level, for which chemical applicability domain, and for further work towards regulatory acceptance.
- Commission Regulation (EU) Amendment 2021/979 states that: "an experimental bioaccumulation study cannot be waived on the basis of low K_{OW} alone, if the substance is surface active or ionisable at environmental pH (4–9)." This is confirmed for several ionic surfactants (**Figure 2**).
- The K_{MW} can be most effectively measured for all surfactant types using the SSLM method. K_{MW} determined by the SSLM method demonstrates good consistency with K_{MW} determined by the benchmark liposome dialysis method (< factor 3). IAM-HPLC can roughly indicate K_{MW} for anionics and cationics.
- A ring test K_{MW} study is being considered to support possible development of OECD test guideline for K_{MW} analysis.
- Study results support earlier assessments (Hodges et al. 2019, Droege et al. 2021) that the K_{MW} is a biologically relevant & methodologically alternative to K_{OW} for ionizable surface-active chemicals.